MCMC algorithms for Subset Simulation

نویسندگان

  • Iason Papaioannou
  • Wolfgang Betz
  • Kilian Zwirglmaier
  • Daniel Straub
چکیده

Subset Simulation is an adaptive simulation method that efficiently solves structural reliability problems with many random variables. The method requires sampling from conditional distributions, which is achieved through Markov Chain Monte Carlo (MCMC) algorithms. This paper discusses different MCMC algorithms proposed for Subset Simulation and introduces a novel approach for MCMC sampling in the standard normal space. Two variants of the algorithm are proposed: A basic variant, which is simpler than existing algorithms with equal accuracy and efficiency, and a more efficient variant with adaptive scaling. It is demonstrated that the proposed algorithm improves the accuracy of Subset Simulation, without the need for additional model evaluations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RELIABILITY–BASED DESIGN OPTIMIZATION OF CONCRETE GRAVITY DAMS USING SUBSET SIMULATION

The paper deals with the reliability–based design optimization (RBDO) of concrete gravity dams subjected to earthquake load using subset simulation. The optimization problem is formulated such that the optimal shape of concrete gravity dam described by a number of variables is found by minimizing the total cost of concrete gravity dam for the given target reliability. In order to achieve this p...

متن کامل

Subset simulation for structural reliability sensitivity analysis

Based on two procedures for efficiently generating conditional samples, i.e. Markov chain Monte Carlo (MCMC) simulation and importance sampling (IS), two reliability sensitivity (RS) algorithms are presented. On the basis of reliability analysis of Subset simulation (Subsim), the RS of the failure probability with respect to the distribution parameter of the basic variable is transformed as a s...

متن کامل

Application of subset simulation methods to reliability benchmark problems

This paper presents the reliability analysis of three benchmark problems using three variants of Subset Simulation. The original version of Subset Simulation, SubSim/MCMC, employs a Markov chain Monte Carlo (MCMC) method to simulate samples conditional on intermediate failure events; it is a general method that is applicable to all the benchmark problems. SubSim/Splitting is a variant of Subset...

متن کامل

Parallelizing MCMC with Random Partition Trees

The modern scale of data has brought new challenges to Bayesian inference. In particular, conventional MCMC algorithms are computationally very expensive for large data sets. A promising approach to solve this problem is embarrassingly parallel MCMC (EP-MCMC), which first partitions the data into multiple subsets and runs independent sampling algorithms on each subset. The subset posterior draw...

متن کامل

Parallelizing MCMC via Weierstrass Sampler

With the rapidly growing scales of statistical problems, subset based communicationfree parallel MCMC methods are a promising future for large scale Bayesian analysis. In this article, we propose a new Weierstrass sampler for parallel MCMC based on independent subsets. The new sampler approximates the full data posterior samples via combining the posterior draws from independent subset MCMC cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015